
it is possible to obtain performance equal to development that uses
only actual cases. In addition, we succeeded in verifying the perfor-
mance of this development technique in breast cancer mass shadow
CAD that uses mammograms, suggesting the applicability of the
proposed development technique to multiple body areas.
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Purpose
The use of computer-aided detection (CADe) yields a statistically
significant improvement in the detection sensitivity of CT colonog-
raphy (CTC). However, current CADe systems display many false-
positive (FP) detections. It is desirable to reduce the number of FPs
while maintaining high detection sensitivity.

Deep convolutional neural networks (DCNNs) have recently
showed state-of-the-art performance in many classification tasks.
Previously, we demonstrated that transfer learning provides an
effective approach for robust application of DCNNs in CTC [1].
However, at a high detection accuracy, the differentiation of small
polyps and non-polyps remained challenging.

Super-learner algorithm is a loss-based supervised ensemble-
learning method that finds an optimal combination over a collection
of prediction algorithms [2]. Thus, it provides a systematic approach
for combining many predictors into one optimal predictor. In this
study, we developed a deep super-learning (DESLA) classifier
scheme based on the super-learner algorithm with multiple types of
DCNNs to improve the polyp detection performance of CADe in
CTC.
Methods
We sampled 154 CTC cases from a clinical multi-center trial that had
been designed to evaluate CTC performance in daily clinical practice.
No specific colon cleansing instruction was given. Fecal tagging by
iodine was administered with or without barium in 34% of the cases.
The CTC acquisitions were performed in dual positions with 120
kVp, 50 effective mA per second, and 2.5-mm section thickness.
After same-day colonoscopy, expert radiologists correlated the colo-
noscopy findings with the CTC images.

Polyp candidates were detected from CTC data by use of a con-
ventional fully automated CADe system. After colon extraction and
shape-based detection of polyp candidates, an AdaBoost classifier
reviewed radiomic shape and texture features of the polyp candidates
to determine the final output of the CADe system.

We used three types of publically available DCNN models:
CaffeNet [3], AlexNet [4], and GoogLeNet [5], which had been
pre-trained to classify images with 1.3 million natural non-med-
ical images from the ImageNet Large Scale Visual Recognition
Challenge 2012 image set. The DCNNs were re-trained by
transfer learning to identify polyps using virtual endoluminal
(VE) images of the polyp candidates detected by our conventional

CADe system. Nine different types of renderings were generated
for each VE image (Fig. 1). A DESLA classifier scheme was
developed by re-training eleven DCNNs on the rendered VE
images, and by combining the re-trained DCNNs with the super-
learner algorithm where a random forest classifier was used as the
meta-classifier.

Fig. 1 Examples of the different types of virtual endoluminal
renderings based on conventional rendering (Type I), shape-index
feature (Type II), and translucency feature (Type IX)

The CTC cases were divided randomly into an independent
training dataset of 62 cases and a test dataset of 92 cases. Both
datasets contained cases with and without fecal tagging. The test
dataset contained 107 biopsy-confirmed adenomas and carcinomas
C6 mm in size: 69 were C10 mm, and 38 were 6–9 mm in size. After
training the CADe system to detect polyp candidates with the training
dataset, the VE images of the polyp candidates were categorized
manually into polyp and non-polyp classes and used to construct and
train the DESLA classifier. Finally, the trained CADe system was
used to detect polyp candidates from the test dataset, and the VE
images of the polyp candidates were reviewed by the trained DESLA
classifier to determine the final polyp detections.
Results
Figure 2 shows free-response receiver-operating characteristic
(FROC) curves of the per-polyp detection performance of the three
schemes: the standalone CADe scheme (CADe), CADe followed by
the best-performing single DCNN (DCNN-CADe), and CADe fol-
lowed by the proposed DESLA (DESLA-CADe) scheme. For
6–9 mm polyps at 2.9 FPs/patient on average, the per-polyp sensi-
tivities of the CADe, DCNN-CADe, and DESLA-CADe schemes
were 73.7, 81.6, and 86.8%, respectively (Fig. 2a). For large polyps,
the detection sensitivities of the CADe, the DCNN-CADe, and the
DESLA-CADe schemes were 85.5, 94.2, and 97.1%, respectively, at
3.9 FPs/patient on average (Fig. 2b).

Fig. 2 FROC curves of the standalone CADe, DCNN-CADe, and
DESLA-CADe schemes in the detection of polyps (a) 6–9 mm and
(b) C10 mm in size
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The DCNN-CADe yielded 93.5% sensitivity for C6 mm polyps at
17.0 FPs/patient on average, whereas with the DESLA-CADe
scheme the number of FP detections was only 3.9 FPs/patient. This
result indicates that the proposed DESLA scheme can reduce the
number of FPs by 83% over that of using a single DCNN at a com-
parable detection sensitivity.
Conclusion
We developed a DESLA classifier scheme using transfer learning of
publically available DCNN models for improving the detection per-
formance of CADe for polyps in CTC. Our preliminary results
indicate that the DESLA scheme can significantly improve polyp
detection performance, both for large polyps and for small polyps.
Therefore, the DESLA scheme provides an effective approach for
improving the polyp detection performance of CADe in CTC.
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Purpose
Breast cancer is the most commonly diagnosed cancer and the leading
cause of cancer death among women worldwide, accounting for
approximately 1.7 million cases and 521,900 deaths in 2012 [1]. The
American Cancer Society, in turn, recommends women over the age
of 40 to get breast cancer screening mammograms on a regular basis
for the purpose of early detection [2]. However, it is difficult for
radiologists to detect and analyze masses due to their variation in
shape, size, and boundary as well as their low signal to noise ratio,
resulting in unnecessary biopsies or missed masses [3]. A computer-
aided diagnosis (CAD) system has been traditionally used in breast
mass classification. However, according to one study on the effec-
tiveness of CAD, it shows no significant improvements in the
sensitivity for invasive breast cancer [4]. To solve this problem,
convolutional neural networks (CNNs) based on deep learning
approaches are being developed by many researchers to be used in
clinical practice. Unlike traditional CAD systems that use pre-deter-
mined features, CNNs determine the most relevant features from data
in order to classify images as normal tissue or malignant masses [5].
A CNN commonly includes the convolutional layers, the pooling
layers, followed by fully connected layers. The convolutional layers

consist of a set of learnable filters that are convolved with the input
image.

A CNN commonly includes the convolutional layers, the pooling
layers, followed by fully connected layers. The convolutional layers
consist of a set of learnable filters that are convolved with the input
image. The pooling layers reduce the size of the input and max-
pooling is commonly used. Fully connected layers have full con-
nections to all activations in the previous layer and calculate the final
output with a soft-max function.
Methods
The two layered CNN architecture used in this study consists of 3
stages of convolutional layers, ReLU (rectified linear unit) activation
layers, and max pooling layers, followed by fully connected layers. A
dropout layer with dropout factor of 0.75 was added before the fully
connected layers to prevent overfitting. An optimum number of iter-
ations had to be determined since a small number of iterations results
in less training and too large a number of iterations results in high
error rates. Observing the iterations versus accuracy graph in Fig. 1, it
was confirmed that to keep increasing the number of iterations does
not further increase the testing accuracies. Therefore, the number of
iterations was set to 50,000 where the curve reached a plateau, and the
batch size was set to 30 for all datasets. Each filter or kernel in
convolutional layers extracts particular features from the images.
Before the number of filters was increased, the model used 32 filters
in the first convolutional layer and then 64 filters in the second layer,
extracting 2048 features from one image. The number of convolu-
tional filters was then increased to 64 and 128, to see if it enables the
model to extract more features and show better performance. 2.5
Image sizes Since the CNN model used in this study was modified
from MNIST classification model, 28 by 28 was the default setting
that could be used as input image sizes. To see if increasing image
sizes enables the network to extract smaller and more detailed fea-
tures and ultimately to show better performance in breast mass
classification, input image sizes of 64 by 64, 128 by 128, and 256 by
256 were compared.

Fig. 1 Iteration versus Training accuraccy comapring RMS and
ADAM optimizer

Results
The main goal of this paper was to build the optimal model for breast
mass classification by applying various methods that influence the
performance of Convolutional Neural Network (CNN). The proposed
model achieved the accuracy of 0.887, sensitivity of 0.903, and
specificity of 0.869 for normal tissue versus malignant mass classi-
fication with augmented data, more convolutional filters, and ADAM
optimizer.
Conclusion
Therefore, it is verified that breast mass classification using CNN
has potential to be a better assisting tool than a CAD system in
providing a consistent second opinion to a radiologist by reducing
false-positive and false-negative diagnoses. A limitation of this
method, however, was that it only considered malignant masses

Int J CARS (2017) 12 (Suppl 1):S1–S286 S279

123


